THE CONJUGATE PROBLEM OF HEAT TRANSFER
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The conditions are determined for optimal control in the conjugate one-dimensional heat-
transfer problem for a water-cooled water-moderated nuclear reactor.

From the physical point of view the most complete system of equations describing nonstationary heat
transfer between a fuel element of a nuclear reactor and the coolant flowing past it is the system of equa-
tions which includes not only the nonstationary thermal conductivity equation for the material of the fuel
element and the equation for the convective heat transfer to the coolant, but also the hydrodynamical equa~
tion, But the numerical realization of the nonstationary conjugate problem gives rise to great difficulties,
To simplify the "conjugate" system of equations we can avoid introducing the equation of hydrodynamics
[1]. This is because for incompressible media it is possible to determine the velocity distribution in the
coolant medium from the heat balance at the surface of the fuel element without solving the hydrodynamical
boundary-value problem, In addition, the velocity distribution in the coolant can be assumed to be inde-
pendent of the time, This observation is linked with the fact that in the transient process the thermal un-
steadiness in the flow of the coolant past the fuel element is always greatly retarded by comparison with the
onset of steady hydrodynamical flow,

Thus the problem of solving the nonstationary problem of optimal control of the thermal process in a
nuclear reactor can be reduced to the analysis, using the principle of the maximum, of the conjugate bound-
ary-value problem which includes a parabolic equation for the thermal conductivity and a hyperbolic equa~
tion for convective heat transfer in the coolant. Analytic methods of solving similar stationary conjugate
problems were first developed in {2, 3]. At the same time we note that in many practical cases the original
system of equations for analyzing the control of the nonstationary heat process in a nuclear reactor can be
described in a simpler form if we replace the heat distribution function for the material of the fuel element
by a stationary [4] or quasistationary [5] temperature distribution at its surface,

In spite of what has been said above, the general formulation of this class of physical problems for
the control of the nonstationary heat process in a nuclear reactor [6] remains unchanged: by controlling the
coolant velocity and the reactivity, we optimize the heat extraction from the fuel element surface, obtaining
the maximal permissible heat extraction when the coolant temperature at the end of the fuel element does
not exceed given values, Below we propose to assume that the fuel element and coolant temperatures vary
along the length of the fuel element, This case is particularly interesting for water-moderated, water-cooled
reactors in which thin cylindrical fuel elements with a length to radius ratio of nearly 500 are used. The
convective heat-transfer coefficient along the coolant column in the channel in which fuel elements are axi-
symmetrically placed is taken to be constant,

Finally in the case of cylindrical geometry (Fig, 1) the conjugate problem is formulated as follows,

The parabolic thermal conductivity equation for the material of the thin cylindrical fuel elements with
internal heat sources has the form
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The hyperbolic heat balance equation at the fuel element surface can
be written as
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We introduce the criterial functions:
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describing the maximum heat extraction from the fuel element surface:
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defining the permissible deviation of the coolant temperature from the given value at the end of the channel,

The form of the time function of the source Q(r) is found by solving the familiar neutron diffusion
equation and for a cylindrical fuel element we can write [7]:
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In our problem,we assume that the time functions for the coolant velocity w(r) and the reactivity p(r)
permit goal-directed changes and can be taken as the control functions, We denote them respectively by the
new variables uy(r) and u,(7), We note also that, in view of the physical conditions, u;(r) and u,(r) satisfy
the following constraints:
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To solve (1) and (2) numerically we use the method of straight lines with the following approximate expres-
sions:
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where
bL=1t@, 1), 8, =0, 1. z,=hi, i=12, ..., 8
n is the number of approximating straight lines along the z-axis with step hy.

We introduce the new variables:
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As a result of the approximation of the partial derivatives (9), and using the new variables (10) in

Eqgs. (1) and (2), we obtain a system of equations which is convenient for the application of the principle of
the maximum [8]:
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In addition, the functional to be maximized can be written as
Jy =%, (1),

and we can write the necessary condition as
Ko eo < [E] (13)

The value [€] is chosen from the dynamical conditions under which the whole nuclear reactor operates,

Thus, in the new notation the mathematical formulation has been reduced to the following., It is re-
quired to flnd control functions u;(7) and u,(r) subject to the constraints (8) and the corresponding functions
x(o)(T) i=1,2,...,n) such that the heat extraction from the fuel element surface by the coolant is maximal
under the assumption that condition (6) holds, Following the principle of the maximum we introduce the
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Fig.2, Linear nature of the change in the control function u,(r) (2) and the corresponding temperature dis-
tribution (°C) at the fuel element surface t(R, z, 7) (1), (1) and in the coolant 6(z, T) (4), (4"): 1, 4) @' =0,1;
17, 4") @' = 1 cal/em? - sec - deg; 3) u,(T) ~ the control function for the coolant velocity,

Fig.3, Effect of the chosen criteria on the nature of the changes in the control functions u, () (3) and uy(r)
(2) and the corresponding temperature distributions (°C) at the fuel element surface t[R, z, 7) (1), (1') and in
the coolant 6(z, T) (4), (4'): 1, 4) o' = 0,1; 1', 4') & = 1 cal/cm?®.sec .deg.

As we see, the problem is typical of problems in optimal control with a free right end, To determine
the optimal controls and the corresponding optimal trajectories we have to find the extremum of the func-
tion

H(x,, o oovos Xnd By Wy oy Yol Uy, Uy, T)
taking account of the heat engineering constraint (6) for the given fuel element materials and the coolant,

The principle result of the analysis of the systems (11) and (15) is the determination of the optimal
temperature distributions up the height of the fuel element and along the coolant layer flowing past the fuel
element in accordance with the given initial thermal output of the source,

By analyzing the numerical results we obtain (Figs,2 and 3) curve 2, p(r), and curve 3, w(r), defining
two variants of optimal control of the thermal process in a water-moderated, water-cooled reactor in the
trangition period to a new output level, The initial fuel element output in both variants is the same, having
the value 100 cal/cm?®.sec, The fundamental fuel element parameters for the numerical evaluation of the
solution are taken from [9].

In the first variant (Fig.2),alinear law is specified for the change in reactivity and the resulting
change in the coolant velocity is nearly linear. In the second variant both control parameters vary arbi-
trarily within a given permissible region (Fig, 3),

The nature of the temperature distribution at the fuel element surface and in the coolant layer in both
variants is described by the curves 1, 1' and 4, 4! for T(z, 7) and 6(z, T) regpectively for two different re-
duced heat-transfer coefficients o = 0,1 and o} = 1,

From the curves we see that when the change in reactivity is linear and the coolant velocity change is
nearly linear, the values of the temperature at the fuel element surface and in the coolant layer are close to
the values of the temperature obtained analytically [10] and correspond to the operational transient regime
of the water-moderated, water-cooled reactor [11, 12],

The mumerical analysis showed that:

1. For the operational equations we can take the conjugate parabolic—hyperbolic system of equations
describing nonstationary heat transfer inawater-moderated, water~cooled nuclear reactor fuel ele~
ment,

2. The effective control parameters are the time functions of the reactivity and the coolant velocity,

3. To construct approximate one-dimensional thermal fields along the fuel element surface it is con-
venient to assume that the convective heat-transfer coefficient lies within the limits 0.1-1,0 cal
/em? . sec - deg,

4. The principle of the maximum defines (is the formal expression of) the optimality condition.
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5, The computational algorithm we have constructed makes it possible to determine numerically both
the nature of the changes in the control parameters which are being optimized and the temperature
distributions at the fuel element surface and in the coolant layer when at the same time we have
maximum heat extraction and minimum deviation of the temperature from the given value at the
end of the channel of the active zone of the reactor during the transient process,

NOTATION

is the thermal conductivity coefficient;

is the reduced heat-transfer coefficient;

are the heat capacity and specific density of the fuel element material;
is the external radius of the fuel element;

are the heat capacity and specific density of coolant;

is the temperature distribution in fuel element material averaged over the cross section;
is the heat-conduction coefficient of fuel element material;

is the temperature distribution in the coolant layer along the axis averaged over the channel cross
section;

is the cross-sectional area of fuel element;

is the cross-sectional area of channel;

is the coolant velocity;

is the initial coolant velocity;

is the extrapolated fuel element length along the z-axis (L' = L + 2d);
is the extrapolation length;

is the geometrical fuel element length along the z-axis;

is the initial source output;

is the space variable along fuel element axis;

is the time;

ig the fuel element reactivity;

is the nuclear decay constant;

is the mean neutron life time;

is the fraction of delayed neutrons;

is the washed perimeter of the fuel element,

LITERATURE CITED

A, V, Lykov and T, L, Perel'man, in: Heat and Mass Transport [in Russian], Vol, 6, Nauka i Tekhnika,
Mingk (1966).

T, L, Perel'man, Inzh,-Fiz, Zh,, 4, No, 4, 5, 8 (1961),

T, L. Perel'man, Prikl, Matem, i Mekhan,, 25, No, 6 (1961).

J. Bowen and E, Masters, The Control of Nuclear Reactors [Russian translation], Gosatomizdat, Mos-
cow (1961),

A, 8, Trofimov, Inzh -Fiz, Zh,, 5, No,4 (1962),

I, M, Kurbatov, M, P, Leonchuk, et al,, Atomnaya E‘nergiya, 19, No,6 (1965).

J. R, Kipin, The Physical Fundamentals of Nuclear Reactor Kinetics [Russian translation], Atomizdat,
Moscow (1967).

L. S, Pontryagin, V, G, Boltyanskii, et al,, The Mathematical Theory of Optimal Processes [in Rus-
sian], Fizmatgiz, Moscow (1961),

R. S. Ambartsumyan, A, M, Glukhov, V, V, Goncharov, A, I, Kovalev, and S, A, Skvortsov, Report No,
2196, Proceedings of the 2nd Geneva Conference on the Peaceful Uses of Atomic Energy, Reports of
Soviet Scientists [in Russian], Vol, 2, Atomizdat, Moscow (1959),

V.S, Ermakov, T, L, Perel'man, et al., Inzh.-Fiz, Zh,, 5, No, 9 (1962),

S. A. Skvortsov, Report No, 2184, Proceedings of the 2nd Geneva Conference on the Peaceful Uses of
Atomic Energy, Reports of Soviet Scientists [in Russian], Vol, 2, Atomizdat, Moscow (1959).

V. 8, Ermakov, I, M, Zhuk, and O, I, Yaroshevich, Inzh,-Fiz, Zh,, 4, No,1 (1961).



