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The conditions a r e  de te rmined  for  opt imal  control  in the conjugate one-d imens iona l  h e a t -  
t r a n s f e r  p r o b l e m  for  a wa t e r - coo l ed  w a t e r - m o d e r a t e d  nuclear  r e a c t o r .  

F r o m  the phys ica l  point of view the most  comple te  s y s t e m  of equations descr ib ing  nonsta t ionary  heat  
t r a n s f e r  be tween a fuel e lement  of a nuclear  r e a c t o r  and the coolant flowing pas t  it is the s y s t e m  of equa-  
t ions which includes not only the nonsta t ionary  the rma l  conductivity equation for  the m a t e r i a l  of the fuel 
e lement  and the equation for  the convective heat t r ans f e r  to the coolant,  but also the hydrodynamical  equa-  
tion~ But the numer ica l  r ea l i za t ion  of the nonsta t ionary conjugate p rob lem gives r i s e  to grea t  diff icult ies .  
To s impl i fy  the "conjugate" s y s t e m  of equations we can avoid introducing the equation of hydrodynamics  
[1]. This  is because  for  i ncompress ib l e  media  it is poss ib le  to de te rmine  the veloci ty  dis tr ibut ion in the 
coolant medium f r o m  the heat  balance at the sur face  of the fuel e lement  without solving the hydrodynamical  
boundary-va lue  p rob l em.  In addition, the veloci ty  dis t r ibut ion in the coolant can be a s sumed  to be inde- 
pendent of the timeo This  observa t ion  is linked with the fact  that in the t rans ien t  p roce s s  the t he rma l  un-  
s tead iness  in the flow of the coolant past  the fuel e lement  is always grea t ly  r e t a rded  by compar i son  with the 
onset of s teady hydrodynamical  flow. 

Thus the p rob l em  of solving the nonsta t ionary p rob lem of optimal  control  of the t he rma l  p r o c e s s  in a 
nuclear  r e a c t o r  can be reduced to the ana lys i s ,  using the pr inc ip le  of the max imum,  of the conjugate bound- 
a r y - v a l u e  p r o b l e m  which includes a parabol ic  equation for  the t he rma l  conductivity and a hyperbol ic  equa-  
tion for  convect ive heat  t r an s f e r  in the coolant.  Analytic methods of solving s i m i l a r  s t a t ionary  conjugate 
p rob l ems  were  f i r s t  developed in [2, 3]. At the s a m e  t ime we note that in many p rac t i ca l  cases  the original  
s y s t e m  of equations for  analyzing the control  of the nonsta t ionary heat  p r o c e s s  in a nuclear  r e ac to r  can be 
descr ibed  in a s i m p l e r  f o r m  if we rep lace  the heat dis t r ibut ion function for  the ma te r i a l  of the fuel e lement  
by a s t a t ionary  [4] or  quas i s t a t iona ry  [5] t e m p e r a t u r e  dis tr ibut ion at its su r face .  

In spite of what has been  said above,  the general  formula t ion  of this c lass  of phys ica l  p rob l ems  for  
the control  of the nonsta t ionary  heat p r o c e s s  in a nuclear  r e a c t o r  [6] r ema ins  unchanged: by control l ing the 
coolant veloci ty  and the reac t iv i ty ,  we opt imize the heat ex t rac t ion  f r o m  the fuel e lement  su r face ,  obtaining 
the maximal  p e r m i s s i b l e  heat  ex t rac t ion  when the coolant t e m p e r a t u r e  at the end of the fuel e lement  does 
not exceed given va lues .  Below we p ropose  to a s s u m e  that the fuel e lement  and coolant t e m p e r a t u r e s  va ry  
along the length of the fuel e lement .  This  case  is pa r t i cu l a r ly  in te res t ing  for  w a t e r - m o d e r a t e d ,  wa te r - coo led  
r e a c t o r s  in which thin cyl indr ical  fuel e lements  with a length to radius  ra t io  of near ly  500 a re  used.  The 
convect ive h e a t - t r a n s f e r  coeff icient  along the coolant column in the channel in which fuel e lements  a r e  axi -  
s y m m e t r i c a l l y  p laced is taken to be constant .  

F inal ly  in the case  of cyl indr ica l  geome t ry  (Fig. 1) the conjugate p rob l em is fo rmula ted  as follows. 

The parabol ic  t he rma l  conductivity equation for  the ma te r i a l  of the thin cyl indrical  fuel e lements  with 
internal  heat  sources  has the f o r m  

_ _  O~t (z, "0 Q (~) ~ o~' Po Ot (z, ,) = a - -  + do (k R~) sin -t- d) - -  it (z, ~) - -  0 (z, ,)1. (1) 
Or O~ 2 Co?o -~- (z Co?oF1 
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Fig.  1. Geometryof the  con- 
jugate sys tem.  

The hyperbolic heat balance equation at the fuel element surface can 
be writ ten as 

t or / 

where the functions t(z, T) and O(z, "r) in Eqs. (1) and (2) sat isfy  the follow- 
ing boundary conditions: 

t(z, ~)l~=0 = 0, 

0 (z, ~)1~=0 = censt, (3) 

Ot (z, ~) _ O0 (z, ~) ] = O, 
Oz ~=L ' OZ lz=L. 

where 
O ~ z ~ < L ' ,  

O ~ T ,  

L ' = L + 2 d ,  

and the following initial conditions: 

t (z, x)lT=o = Q~ sin ~-, (z + d) + 
Po a 

o (z, T)l~=o = 

We introduce the cr i te r ia l  functions: 

Q~ [ 1 --  cos z~ 
:~ Fo w (0) qw T (z 

+ d) ] + o (z, ~)l~=o ; 

[ ] Q~ 1 -- cos d) + 0 (z, ~)]~o 
~F~, (0) c~w ~ (z + . 

(4) 

L" T 

.) ] ,  = 2,,R,~," [ ~ it(z, ~)] - o ( z ,  ~)~d,, = m~x,  (5) 
0 

describing the maximum heat extraction f rom the fuel element surface:  
f 

b) J~ = .f g/2 [0 (L', x) --  [OlPd ~ -<. [e], (6) 
0 

defining the permiss ible  deviation of the coolant temperature f rom the given value at the end of the channel. 

The form of the time function of the source Q if) is found by solving the famil iar  neutron diffusion 
equation and for a cylindrical  fuel element we can write [7]: 

Q(z)=-Q~ [~pp(;)  ] 1--p(T)/13 

In our problem,we assume that the time functions for the coolant velocity w0") and the reactivi ty f)(T) 
permit  goal-directed changes and can be taken as the control functions. We denote them respectively by the 
new variables ulff  ) and u2ff ). We note also that, in view of the physical conditions, ul{'r ) and u2ff ) sat isfy 
the following constraints:  

Ulmin ~ 12.1 (T) ~ U 1 . . . .  (8) 

U~,,.n ~ u~ (~) ~ us . . . .  

To solve (1) and (2) numerical ly  we use the method of straight lines with the following approximate expres-  
sions: 

O~t (z, ~) z=zr 1 (ti+ 1 -  2t~ + ti_l), 
Oz~ (h=)2 (9) 

O0(Z,oz T) z=zi= 2hzl (0~+1--0i_1), 
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w h e r e  

t ~ = t ( z  v z); 0~=0(z~,  r). z~=h~i,  i =  1, 2 . . . . .  n; 

n is  the  n u m b e r  of a p p r o x i m a t i n g  s t r a i g h t  l i n e s  a l o n g  the  z - a x i s  w i t h  s t e p  h z .  

We i n t r o d u c e  the n e w  v a r i a b l e s :  

o 

xi+i -~ tl (~); xi+~+ ~ ~ O~ (*) (i = 1, 2 . . . . .  n); 

~ N  
- =  .f i o .  i01],d X2n+~ 

(10) 

As  a r e s u l t  of the  a p p r o x i m a t i o n  of the  p a r t i a l  d e r i v a t i v e s  (9), and  u s i n g  the  new  v a r i a b l e s  (10) in  
E q s .  (1) and  (2), we  o b t a i n  a s y s t e m  of e q u a t i o n s  w h i c h  is  c o n v e n i e n t  f o r  the a p p l i c a t i o n  of the p r i n c i p l e  of 
the  m a x i m u m  [8]: 

w h e r e  

n 

x i = a'2rt Rih~ ~ (xi+ i - -  x~+n+i); 
i=l 

a 1 x~ = -:~ (x~ - -  2x~) + [Q (z.  u~) - -  0.* (x~, x~+.)l; 
lZz Co 'Yo 

a 1 xi+~ = ~ (x~+~ - -  2x~+~ + x3 + [O (z. u~) - -  Q* (xi+. xi+~+0I 
h~ CoY o 

i = 2 ,  3, . . . ,  n - - l ;  

�9 a 1 x~+~ = ~ (x~ x~+~) + [O (z~, u0--  O* (X~+l, x~+0l; 
CoYo 

2 z R i  a' (x2__x~+2)_  ui 1 (x.+8__O); 
x,~+~-- cl yiFc 

_ 1 
2ff~ /~1 ~ '  (Xf+ 1 _ _  X i + r t + l )  ___ ggl (Xi+r~+2 - -  Xi+lz) 

x~+n+t cl Yi Fc ~ .  

(i = 2,3 . . . . .  n -  1); 

- -  i 
2z~ Ri (z (x~+ i __ x2'~+i ) __ ui _ _  (xz++i __ x~,~); 

g2n+l = Cx Y1Fc 2hz 

x2~+i = N/2 (x~,~+i - -  [0] )2, 

Q (z v uz) = Qo sin ~5- (zg -}- d) [3 - -  u z exp[ Lu~I: ] U ~ e x p F  
L ~ - u ~  J l t - ~  [ 

T ; 
l 

(11) 

2 ~  t 
O*(xi+i, xi+~+0 = T ( x i + i - - x i + ~ + l )  (i = 1,2 . . . . .  n). 

/<1 

T h e  i n i t i a l  c o n d i t i o n s  fo r  E q s .  (11) a r e  

x~ (0) = 0; 

x~+l (0) -- Q~ 
Po a 

x,+.+~(0)= 

C2oF ~ L (z + d) + - -  - -  sin - ~  
~Fo w (0) clvl 

I ~ ( z + d ) ] + O ( z , ~ ) , z = o  • 1 - -  cos ~ -  

(i = I, 2 . . . . .  n); 

Q~ 1 - -  cos (z~ § d) § 0 (z, "c)z=o 
z~w (0) 7 iqF c L ;  

(i = 1, 2 . . . . .  n); 

(12) 

x~+2 (0) = 0. 
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In addition, the functional to be maximized can be wri t ten as 

J~ = Xl (% 

and we can wri te  the neces sa ry  condition as 

x~,~+~ ~ [e]. (13) 

The value [e] is chosen f rom the dynamical conditions under which the whole nuclear reac tor  opera tes .  

Thus, in the new notation the mathematical  formulation has been reduced to the following. It is r e -  
quired to find control functions Ut(T ) and u2ff) subject  to the constraints  (8) and the corresponding functions 
x.(~ (i = 1, 2, . .  , n) such that the heat extract ion f rom the fuel element surface  by the coolant is maximal 

1 

under the assumption that condition (6) holds. Following the principle of the maximum we introduce the 
function 

H (Xl, xv . . . ,  x,~; % % . . . . .  ,,~; u~; u~; "0, 

which explicitly is 

[ " ] H (x, 4, u, x)=  r Rlhz X (xi+l-- xi+n+z) r 
i=l 

{a~_. (X8 __ 2X2) + l [ Q ( z p t t 2 ) _ _ Q , ( x 2 ,  X2+n)]}42.3t_Z{_~2z2z(Xf+2__2xi+l_{_xi)jl_ i [Q(zv u2) + 
" ~  c~176 ~=2 Co~?o 

} { a  nz 1 } [ 2~R1~' clY1Fc (x2__X~r,+~) --Q*(x~+. x~+,~+Ol 4~+1 + 7v-(x~--x.+O + .[Q(z,. uO-- ~*(x,~+l, x~.+l)l * .+1+ 
Co ~? o (14) 

n--l 
1 2a~ Rx t~ (xi+ 1 -  xi+.+x) - -  ul 

- -u l  " - ~  x.+3 %+2 + clvlFe 2h z 

C1 Y1 -Fc (Xn+l - -  X2n+l) - -  ul 2h-~- 

• (x~,~+l --  x~) ] 4s,~+z + [N/2 (x2,+~ - -  [0])~]4~+v 

where the r r �9 �9 �9 , r a re  conjugate functions sat isfying the following sys tem of equations: 

~n+ l -= - -  (z' 2~x Rlhz 41" 

~1 = 0; 

~ = - -  ~z'2g Rlh~ ~21 -}- 2a _} 2(z' 42 - -  ~ 43 - -  Y1Fc 4n+2; 
Co Yo R1 Cl 

( 2 a  ~ c0 Yo R-----~ 2(z' ) a 2~ R1 cr ' cly1Fc = + + 4 , + 1 -  -;F + 4,+.+1 

(i = 2, 3 . . . . .  (n--  1)); 

�9 ' (-~2 2~z" ) a 2nR~(z' 
4,~+1 = --  (z 2~x Rlhz 41+ -1 C0 Y0 R1 4a+l ~ 40, C1 ~1Fc 42~+1; 

~i+n+l = a'2r~R1hz41 2r 2z R1 o~' U 1 u 1 
Co u R1 4i+~ + Cl Vl Fc 41+.+1 + ~ 41+. - -  -"~- 4~+.+2 

( i=  2, 3, . . . ,  (a--1.)); 

2 c z '  2~/~1 cz' Ul 
Co yoR1 4n+l -I- - -  4Sn+l - [ - C l  YI Fc ~ z  4~n+l--N(x2n+l--[O])42n+~; 

(15) 

4~n.+~ = 0; 

the boundary conditions for (15) are: 

4 1 ( T ) = - - 1 ;  

4 , ( T ) = % ( T )  . . . . .  4~n+~(T)=0. 
(16) 
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Figo2o Linear nature of the change in the control function u2(~" ) (2) and the corresponding temperature dis- 
tribution (~ at the fuel element surface t(R, z, ~') (1), (1') and in the coolant 0(z, T) (4), (4'): 1, 4) oz, = 0.1; 
i ' ,  4') c~, = 1 cal /cm 2 o see �9 deg; 3) u I (T) -- the control function for the coolant velocity. 

Fig. 3. Effect of the chosen cri teria on the nature of the changes in the control functions ui(T ) (3) and u2('r ) 
(2) and the corresponding temperature distributions (~ at the fuel element surface t(l:l, z, T) (1), (i') and in 
the coolant 0(z, T) (4), (4'): i ,  4) C~' = 0.i; i ' ,  4') O~' = 1 cal /cm 2 .see .deg. 

As we see ,  the prob lem is typical of problems in optimal control  with a f ree  right end. To determine  
the optimal controls  and the corresponding optimal t r a jec to r ies  we have to find the ex t remum of the func- 
tion 

H (xl. x2 . . . .  x~; ,1. % . . . .  ~ ;  u,. u2. T) 

taking account of the heat engineering constraint  (6) for  the given fuel e lement  mater ia ls  and the coolant. 

The principle  resu l t  of the analysis of the sys tems (11) and (15) is the determinat ion of the optimal 
t empera tu re  distr ibutions up the height of the fuel e lement  and along the coolant layer  flowing past the fuel 
e lement  in accordance with the given initial thermal  output of the source .  

By analyzing the numer ica l  resu l t s  we obtain (Figs. 2 and 3) curve 2, pff),  and curve 3, wff) ,  defining 
two var iants  of optimal control  of the thermal  p roces s  in a wa te r -modera ted ,  wa te r -coo led  r eac to r  in the 
t ransi t ion per iod  to a new output level .  The initial fuel e lement  output in both var iants  is the same,  having 
the value 100 c a l / c m  3 . s e c .  The fundamental fuel e lement  p a r a m e t e r s  for  the numerical  evaluation of the 
solution a re  taken f rom [9]. 

In the f i r s t  var iant  (Fig. 2 ) , a l i nea r  law is specified for  the change in reac t iv i ty  and the resul t ing 
change in the coolant veloci ty  is near ly  l inear .  In the second variant  both control  p a r a m e t e r s  v a ry  a rb i -  
t r a r i l y  within a given pe rmiss ib le  region (Fig. 3). 

The nature of the t empera tu re  distr ibution at the fuel element surface  and in the coolant l ayer  in both 
var iants  is descr ibed  by the curves  1, 1' and 4, 4' for  T'(z, ~') and g(z, ~') respec t ive ly  for two different  r e -  ? 
duced hea t - t r ans f e r  coefficients  cq = 0,1 and c~ = 1. 

F r o m  the curves  we see that when the change in reac t iv i ty  is l inear  and the coolant veloci ty  change is 
near ly  l inear ,  the values of the t empera tu re  at the fuel e lement  surface  and in the coolant layer  are  close to 
the values of the t empera tu re  obtained analytically [10] and cor respond to the operational  t ransient  regime 
of the wa te r -modera ted ,  wa te r -coo led  r eac to r  [11, 12]. 

The numer ica l  analysis showed that: 

1. For  the operat ional  equations we can take the conjugate p a r ab o l i c -h y p e rb o l i c  sys tem of equations 
descr ibing nonstat ionary heat t r ans fe r  in awa te r -modera t ed ,  water -cooled  nuclear  r eac to r  fuel e le -  
ment.  

2. The effective control  p a r a m e t e r s  are  the t ime functions of the react iv i ty  and the coolant veloci ty .  

3. To construct  approximate one-dimensional  thermal  fields along the fuel e lement  surface  it is con- 
venient to assume that the convective hea t - t r ans fe r  coefficient l ies within the l imits  0.1-1.0 cal 
/ c m  2. sec �9 deg. 

4. The pr inciple  of the maximum defines (is the formal  express ion  of) the optimali ty condition. 
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5. The computational algorithm we have constructed makes it possible to determine numerically both 
the nature of the changes in the control parameters which are being optimized and the temperature 
distributions at the fuel element surface and in the coolant layer when at the same time we have 
maximum heat extraction and minimum deviation of the temperature from the given value at the 
end of the channel of the active zone of the reactor during the transient process. 

N O T A T I O N  

is the thermalconductivity coefficient; 
is the reduced heat-transfer coefficient; 
are the heat capacity and specific density of the fuel element material; 
is the external radius of the fuel element; 
are the heat capacity and specific density of coolant; 
is the temperature distribution in fuel element material averaged over the cross section; 
is the heat-conduction coefficient of fuel element material; 
is the temperature distribution in the coolant layer along the axis averaged over the channel cross 
section; 
is the cross-sectional area of fuel element; 
is the 
is the 
is the 
Is the 
Is the 
is the 
is the 
is the 
is the 
is the 
is the 
is the 
Is the 
is the 

cross-sectional area of channel; 
coolant velocity; 
initial coolant velocity; 
extrapolated fuel element length along the z-axis (L' = L + 2d}; 
extrapolation length; 
geometrical fuel element length along the z-axis; 
initial source output; 
space variable along fuel element axis; 
time; 
fuel element reactivity; 
nuclear decay constant; 
mean neutron life time; 
fraction of delayed neutrons; 
washed perimeter of the fuel element. 
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